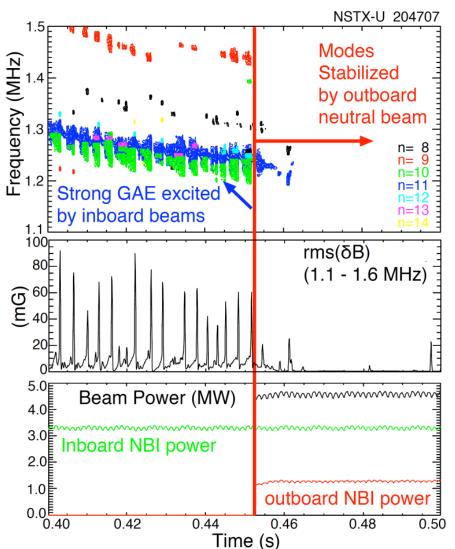
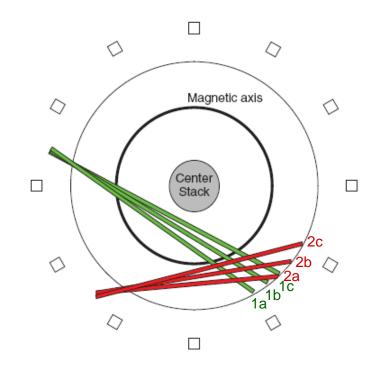
Numerical simulations of Global Alfven Eigenmode (GAE) stabilization in NSTX-U


E. V. Belova¹, E. D. Fredrickson¹, N. A. Crocker², and the NSTX-U team

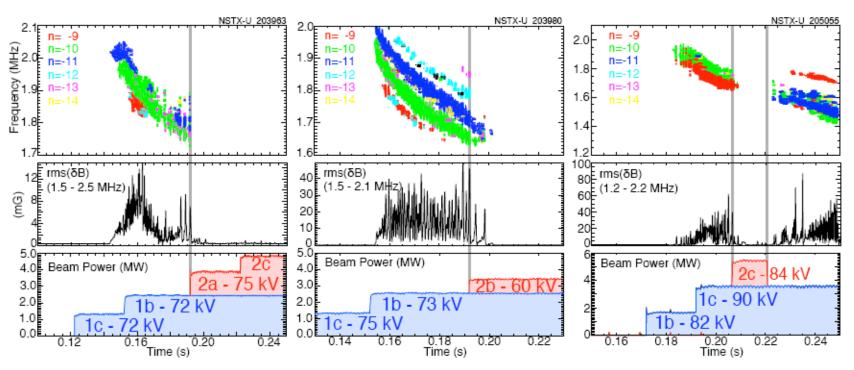
- 1) Princeton Plasma Physics Laboratory, Princeton NJ, USA
- 2) University of California, Los Angeles, California 90095, USA

NSTX-U off-axis neutral beam suppresses Global Alfven Eigenmodes (GAEs) [E. Fredrickson, PRL 2017]


- Counter-propagating GAEs are frequently observed in the sub-cyclotron frequency range of $0.1f_{ci}$ up to $0.5f_{ci}$, in NSTX and NSTX-U.
- Driven by cyclotron resonance with beam ions.
- New neutral beam sources -> ability to control the fast ion distribution.
- Off-axis neutral beams inject fast ions onto trajectories largely parallel to the magnetic field, with pitch 0.8<V_{II}/V<1.
- Reliable suppression of the counterpropagating GAE when an additional 1.3MW is injected using the outboard beam.

New neutral beam sources on NSTX-U allowed demonstration of GAEs stabilization

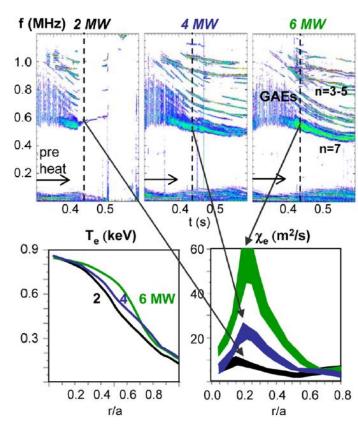
- NSTX-U had six beam sources, the original three from NSTX with tangency radii inboard of the magnetic axis ($R_{mag} \approx 1.1 \text{ m}$) at $R_{tan} \approx 0.7$, 0.6, and 0.5 m, (labeled 1a, 1b, 1c), and three new outboard sources with $R_{tan} = 1.3$, 1.2, and 1.1 m (labeled 2a, 2b, 2c).
- Off-axis neutral beams inject fast ions onto trajectories largely parallel to the magnetic field, with pitch 0.8<V_{II}/V<1.
- New neutral beam sources -> ability to control the fast ion distribution.



Sketch of neutral beam geometry. Original NSTX beams in green, labeled 1a, 1b, 1c; new beams for NSTX-U shown in red labeled 2a, 2b and 2c.

GAE stabilization has been well documented for many NSTX-U shots

Three examples of GAE being suppressed by the injection of one of the three off-axis beam sources. Figure 1(c) also shows that the GAE can reappear when the 2c power is turned off.


The measured GAE suppression time ~ few ms is much smaller than slowing-down time (~50ms), suggesting that it takes relatively few high-pitch fast ions to suppress the GAE.

Correlation between strong GAE/CAE activity and flattening of the electron temperature profile has been observed in NSTX [Stutman, PRL 2009]

- Intense GAE/CAE activity (0.5-1.1MHz).
- Flattening of T_e profile with
 - increased beam power;
 - beam energy scanned between 60 and 90 keV [Stutman, PRL 2009].
- Was attributed to
 - enhanced electron transport due to orbit stochasticity in the presence of multiple GAEs [Gorelenkov, NF 2010].
 - energy channeling due to CAE coupling to KAW [Belova, PRL 2015].
- Anomalously low T_e potentially can have significant implications for future fusion devices, especially low aspect ratio tokamaks.

Correlation between GAE activity, T_e flattening, and central electron heat diffusivity χ_e in NSTX H modes with 2, 4, and 6MW neutral beam.

HYM – HYbrid and MHD code

Applications

- NSTX
 - Sub-cyclotron frequency Alfven eigenmodes (GAE and CAE)
- ICC Theory and Modeling
 - Hybrid simulations of spheromak merging
 - FRC: Effects of beam ions on stability
 - Rotation control
 - n=2 rotational and n=1 wobble modes

Code description

- 3-D nonlinear.
- Physical models:
 - Resistive MHD & Hall-MHD
 - Hybrid (fluid electrons, particle ions)
 - MHD/particle (one-fluid thermal plasma, + energetic particle ions)
 - Drift-kinetic particle electrons
- Full-orbit kinetic ions.
- For particles: delta-f / full-f numerical scheme.
- Parallel (3D domain decomposition, MPI)

Self-consistent MHD + fast ions coupling scheme

Background plasma - fluid:

$$\rho \frac{d\mathbf{V}}{dt} = -\nabla p + (\mathbf{j} - \mathbf{j}_b) \times \mathbf{B} - n_b (\mathbf{E} - \eta \mathbf{j})$$

$$\mathbf{E} = -\mathbf{V} \times \mathbf{B} + \eta \mathbf{j}$$

$$\mathbf{B} = \mathbf{B}_0 + \nabla \times \mathbf{A}$$

$$\partial \mathbf{A} / \partial t = -\mathbf{E}$$

$$\mathbf{j} = \nabla \times \mathbf{B}$$

$$\partial p^{1/\gamma} / \partial t = -\nabla \cdot (\mathbf{V} p^{1/\gamma})$$

$$\partial \rho / \partial t = -\nabla \cdot (\mathbf{V} \rho)$$

Fast ions – delta-F scheme:

$$\frac{d\mathbf{x}}{dt} = \mathbf{v}$$

$$\frac{d\mathbf{v}}{dt} = \mathbf{E} - \eta \mathbf{j} + \mathbf{v} \times \mathbf{B}$$

$$w = \delta F / F$$
 - particle weight

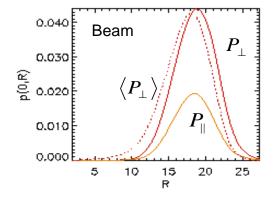
$$\frac{dw}{dt} = -(1 - w)\frac{d(\ln F_0)}{dt}$$

$$F_0 = F_0(\varepsilon, \mu, p_{\phi})$$

 ρ , **V** and ρ are thermal plasma density, velocity and pressure, n_b and j_b are beam ion density and current, and $n_b << n_e$ — is assumed.

Self-consistent anisotropic equilibrium including the NBI ions

Grad-Shafranov equation for two-component plasma:


MHD plasma (thermal) and fast ions [Belova et al, Phys. Plasmas 2003].

$$\frac{\partial^{2} \psi}{\partial z^{2}} + R \frac{\partial}{\partial R} \left(\frac{1}{R} \frac{\partial \psi}{\partial R} \right) = -R^{2} p' - HH' - GH' + RJ_{b\phi}$$

$$B = \nabla \phi \times \nabla \psi + h \nabla \phi$$

$$h(R, z) = H(\psi) + G(R, z)$$
Beam effects
$$\mathbf{J}_{bp} = \nabla G \times \nabla \phi , G - \text{poloid}$$

$$\mathbf{B} =
abla \phi imes
abla \psi + h
abla \phi$$
 $h(R,z) = H(\psi) + G(R,z)$
 $\mathbf{J}_{bp} =
abla G imes
abla \phi$, G – poloidal stream function

Modifications of equilibrium due to beam ions:

- more peaked current profile,
- anisotropic pressure,
- increase in Shafranov shift

might have indirect effect on stability.

Fast ions – delta-f scheme: $F_0 = F_0(\epsilon, \mu, p_{\phi})$

Equilibrium distribution function $F_0 = F_1(v) F_2(\lambda) F_3(p_{\varphi}, v)$

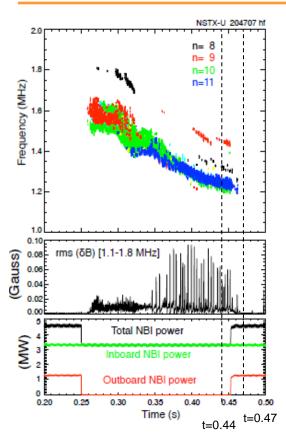
$$F_{1}(v) = \frac{1}{v^{3} + v_{*}^{3}}, \text{ for } v < v_{0}$$

$$F_{2}(\lambda) = \exp(-(\lambda - \lambda_{0})^{2} / \Delta \lambda^{2})$$

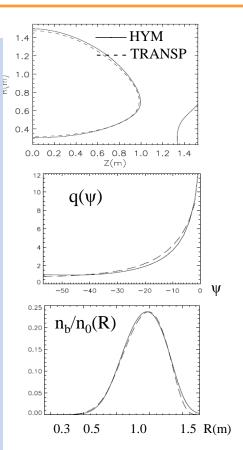
$$F_{3}(p_{\phi}, v) = \frac{(p_{\phi} - p_{0})^{\beta}}{(R_{0}v - \psi_{0} - p_{0})^{\beta}}, \text{ for } p_{\phi} > p_{0}$$

where $v_0 = 2-5v_A$, $v_* = v_0/2$, $\lambda = \mu B_0/\varepsilon$ – pitch angle parameter, $\lambda_0 = 0.5$ -0.7, and $\mu = \mu_0 + \mu_1$ includes first-order corrections [Littlejohn'81]:

$$\mu = \frac{(\mathbf{v}_{\perp} - \mathbf{v}_{\mathbf{d}})^{2}}{2B} - \frac{\mu_{0} v_{\parallel}}{2B} [\hat{b} \cdot \nabla \times \hat{b} - 2(\hat{a} \cdot \nabla \hat{b}) \cdot \hat{c}]$$


 \mathbf{v}_d is magnetic gradient and curvature drift velo city, $\hat{c} = \mathbf{v}_{\perp}/v_{\perp}$, $\hat{a} = \hat{b} \times \hat{c}$.

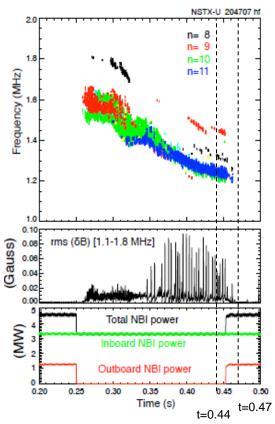
Parameters are chosen to match TRANSP beam profiles.



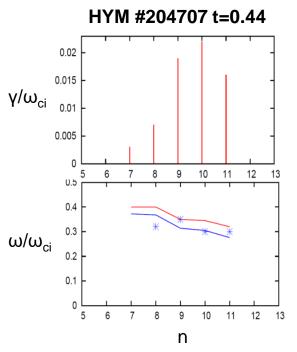
Simulations have been performed to study the excitation and stabilization of GAEs in the NSTX-U

- (a) Spectrogram on magnetic fluctuations (n=8-11 counter-GAEs).
- (b) Rms magnetic fluctuations;
- (c) Injected beam power.

- Simulations using the HYM code have been performed for NSTX-U shot #204707 right before (t=0.44s) and shortly after (t=0.47s) the additional off-axis beam injection.
- Plasma and beam profiles have been chosen to match TRANSP profiles for t=0.44s and t=0.47s.
- The beam ion distribution function matches TRANSP data, with pitch distribution in the form $F_b \sim \exp[-(\lambda \lambda_0(\epsilon))^2/\Delta\lambda(\epsilon)^2]$.

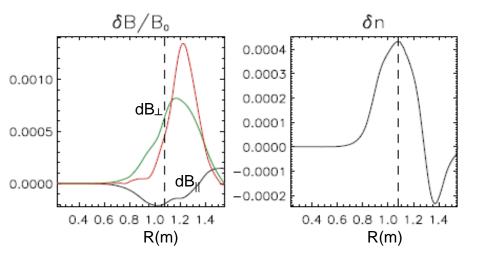


Plasma shape, q- and n_b profiles for NSTX-U shot 204707 t=0.44 from TRANSP and HYM GS solver + FREE FIX.

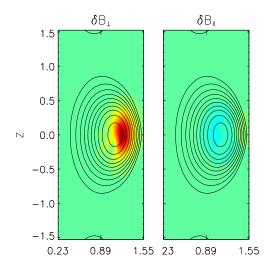


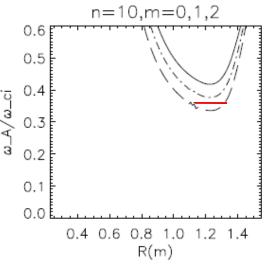
HYM reproduces experimentally observed unstable GAEs

- (a) Spectrogram on magnetic fluctuations (n=8-11 counter GAEs).
- (b) Rms magnetic fluctuations;
- (c) Injected beam power.


(a) Growth rates and (b) frequencies of unstable counter-GAEs from HYM simulations for t=0.44s. Blue line is Doppler-shift corrected frequencies, points – experimental values.

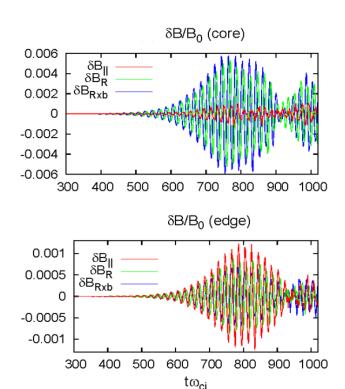
- Simulations reproduce most unstable toroidal mode numbers and GAEs frequencies.
- HYM overestimates growth rates compared experimental analysis by 2-3 times.
- Experiment: $n=-10 \text{ } \gamma/\omega_{ci}=0.84\%$ $n=-11 \text{ } \gamma/\omega_{ci}=0.6\%$
- Growth rates are sensitive to distribution function parameters – resonance particles are in 'tail' of distribution.





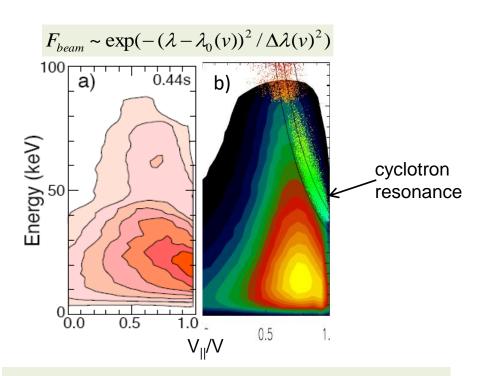
NSTX-U simulations: n=-10 counter-GAE (t=0.44s)

Radial profile of δB and δn for n=-10 counter-GAE.

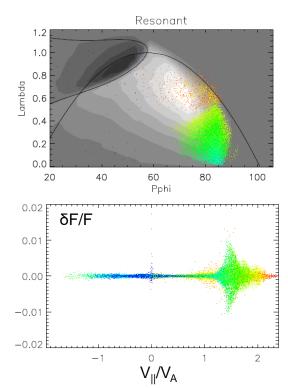

Radial profile of ω_A/ω_{ci} for n=-10, m=0-2; location of GAE.

- Unstable modes are counter-rotating and have shear Alfven polarization.
- Located near min of ω_A

Nonlinear simulations: n=-11 counter-GAE (t=0.44s)

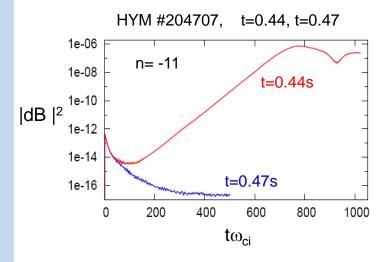

Time evolution of perturbed magnetic field components from nonlinear simulations for n=-11 GAE.

- Nonlinear simulations show peak saturation amplitudes of δB/B₀~5×10⁻³ at R~1.2m close to the minimum of the Alfvén continuum, and δB/B₀~10⁻³ near the edge at the midplane.
- Unstable modes have shear Alfven polarization in the core, and mixed polarization at the edge.



Improved F_{beam} fit allows more accurate description

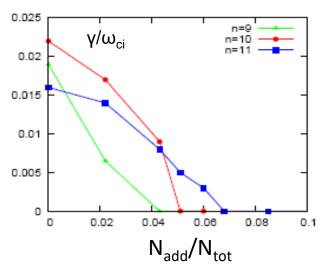
- (a)TRANSP fast-ion distribution before the outboard beam injection t=0.44.
- (b) HYM fast-ion distribution from n=-11 GAE simulations; dots show resonant particles.


- (a) Location of resonant particles in phase space: $\lambda = \mu B_0 / \epsilon$ vs p_{ϕ} .
- (b) Particle weight w ~ δF/F vs orbitaveraged parallel velocity. Particle color corresponds to different energies: from E=0 (purple) to E=90keV (red).

HYM simulations reproduce experimental finding: off-axis neutral beam injection reliably and strongly suppresses unstable GAEs

- The beam ion distribution function with pitch distribution in the form $F_b \sim \exp[-(\lambda \lambda_0(\epsilon))^2/\Delta\lambda(\epsilon)^2]$.
- Additional off-axis beam injection modeled by adding beam ions with distribution $F_{add} \sim \exp[-\lambda^2/\Delta\lambda_a(\epsilon)^2]$, i.e. with λ_0 =0, $\Delta\lambda_a$ < $\Delta\lambda$ and about 1/3 of the total beam ion inventory or less.
- HYM shows complete linear stabilization of n= 7-12 counter-GAEs by additional offaxis beam injection.

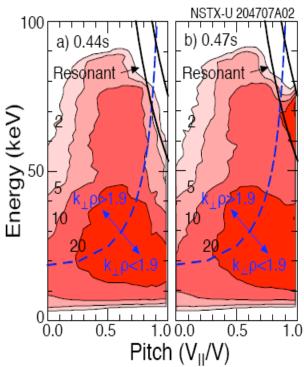
Time evolution of magnetic energy of n=-11 GAE from HYM simulations for t=0.44s (red), and t=0.47s (blue).

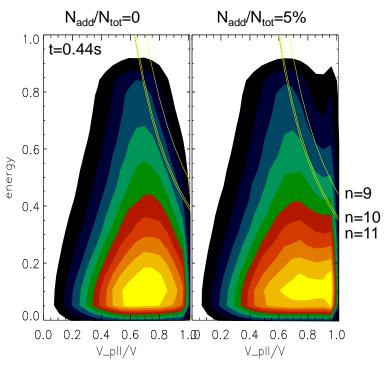


Complete stabilization of all unstable GAEs requires an additional beam power significantly lower than what was used in NSTX-U

- Off-axis beam injection has been modelled by adding beam ions with distribution $F_{add} \sim exp[-\lambda^2/\Delta\lambda~(\epsilon)^2]$, and varying density.
- Fraction of off-axis beam population of the total fast ion inventory has been varied from 4% to 17%.
- Unstable n=-11 GAE is stabilized when the fraction of the additional beam ions is larger than 7%.
- Stabilization threshold is lower for lower n modes.

Experimental values of fraction of outboard beam power vs total beam power in NSTX-U were ~24-30%.


Growth rates of n=-11 (blue), -10 (red), -9 (green) GAEs vs fraction of outboard beam ion population.



GAE stabilization is consistent with analytic predictions

Analytical instability condition: $2 < k_{\perp} \rho_b < 4$ [Gorelenkov,2003] – large pitch particles are stabilizing.

TRANSP fast-ion distribution before and after the outboard beam injection. Fast ions with pitch $v_{\parallel}/v_{\sim}1$ are responsible for GAE suppression [Fredrickson,2017].

Fast-ion distribution from HYM simulations before the outboard beam injection and for case with N_{add}/N_{tot} =5% (n=9,10 are stable). Cyclotron resonance lines are shown for n=9,10,11 GAEs.

Summary and Future Work

- HYM simulations show range of toroidal mode numbers, and frequencies of unstable GAEs that match the experimentally observed GAEs in NSTX-U.
- Growth rates and saturation amplitudes of GAEs are overestimated in simulations.
- Simulations reproduce experimental finding, namely it is shown that off-axis neutral beam injection reliably and strongly suppresses all unstable GAEs.
- A very effective mechanism for stabilizing GAEs threshold for stabilization for additional beam is less than 7% of total beam power.

Future work:

- Bulk plasma rotation and Hall term can have effect on GAE stability and mode structure.
- Comparison with experimental results including mode structure, saturation amplitudes and etc for several shots.

